On Estimation
<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>Exercise MH:309B</td>
<td>April 15:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Except: April 15</td>
<td>Lecture M:B</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Lab 2,3</td>
<td>Lab 1</td>
<td>Exercise MH:362B</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Lecture M:B</td>
<td>Exercise</td>
<td>Lecture M:B</td>
<td>Lab 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MH:362B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Lab 3</td>
<td>Lab 2</td>
<td></td>
<td>Lab 1</td>
</tr>
<tr>
<td>15</td>
<td>Exercise</td>
<td></td>
<td></td>
<td>April 16:</td>
</tr>
<tr>
<td></td>
<td>MH:309B</td>
<td></td>
<td></td>
<td>Exer.</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>Lab 1</td>
</tr>
</tbody>
</table>
Properties of the covariance function of a weakly stationary random process:

- $r(0) = \mathbb{V}[X(t)] \geq 0$
- $r(\tau) = r(-\tau)$
- $r(0) \geq |r(\tau)|$
- r is continuous at zero $\iff r$ is continuous everywhere
- r is non-negative definite: $\sum_i \sum_j \alpha_i \alpha_j r(t_i - t_j) \geq 0$
A process \(\{X(t), \ t \geq 0\} \) is a Poisson process with parameter \(\lambda \) if

- \(X(0) = 0 \), and

- it has stationary and independent increments, and

- the increment \(X(t+h) - X(t) \) is Poisson distributed with mean \(\lambda h \).
Definition. Let T be a subset of the real line, $T \subseteq \mathbb{R}$. A set of random variables \(\{X_t, t \in T\} \) is called a random (or stochastic) process with time domain T.

Definition. Let \(\{X_t, t \in T\} \) be a random process. The function \(m_{X}: T \mapsto \mathbb{R} \) given by \(m_{X}(t) = \mathbb{E}[X_t] \) is called the mean function of the random process \(\{X_t, t \in T\} \) (if the expectation exists).

Definition. Let \(\{X_t, t \in T\} \) be a random process. The function \(r_{X}: T^2 \mapsto \mathbb{R} \) given by \(r_{X}(s, t) = \mathbb{C}[X_s, X_t] \) is called the covariance function of the random process \(\{X_t, t \in T\} \) (if the covariance exists).

Definition. A random process \(\{X_t, t \in T\} \) is weakly stationary if, and only if, both of the following two conditions are satisfied:

- The mean function is constant, that is, there exist a constant c such that $m_{X}(t) = c \forall t \in T$.
- The covariance function depends only on the time-lag, that is, there exist a function \tilde{r}_{X} such that:
 \[r_{X}(s, t) = \tilde{r}_{X}(s - t) \forall (s, t) \in T^2. \]
 If such a function exists, then \tilde{r}_{X} is also called the covariance function of the process.

Let Y and Z be two independent random variables with expectation zero and variance σ^2_Y and σ^2_Z. We construct the random process \(\{X(t), t \in \mathbb{R}\} \) by:
\[
X(t) = Y \sin(t) + Z.
\]

Is this process weakly stationary?

Let $A \in \mathcal{U}(0, 1)$ and $\phi \in \mathcal{U}(0, 2\pi)$ be two independent random variables. Define the random process \(\{X(t), t \in \mathbb{R}\} \) by:
\[
X(t) = A \cos(t + \phi).
\]

Is this process weakly stationary?

Definition. Let \(\{X(t), t \in T\} \) be any random process. The function \(r_{X}(s, t) = \mathbb{C}[X(s), X(t)] \) is called the covariance function.

Definition. Let \(\{X(t), t \in T\} \) be a weakly stationary random process. The function \(r_{X}(\tau) = \mathbb{C}[X(t), X(t + \tau)] \) is called the covariance function.

Let r be the covariance function of a weakly stationary random process. Prove that $r(0) \geq |r(\tau)| \forall \tau$.
Is this process weakly stationary?

Let \(X_t \) be a random process. The function \(\tau \to X_t(\tau + \omega) - X_t(\omega) \) is called the covariance function.

A set of random variables \(Y_t \) is called a stationary process if, and only if, both of the following two conditions are satisfied:

1. \(\lambda \in \mathbb{R} \)
 - \(\lambda = 0 \): \(\mathbb{E}[Y_t] = \text{constant} \)
 - \(\lambda = 1 \): \(\text{Var}(Y_t) = \text{constant} \)
 - \(\lambda = 2 \): \(\text{Cov}(Y_t, Y_{t+\lambda}) = \text{constant} \)

\(\tau \): time

\(Y_t \): random variable

\(X_t \): random process

\(\lambda \): constant

\(\mathbb{E} \): expectation function

\(\text{Var} \): variance function

\(\text{Cov} \): covariance function

\(\mathbb{R} \): set of real numbers
Definition. Let T be a subset of the real line, $T \subseteq \mathbb{R}$. A set of random variables $\{X_t, t \in T\}$ is called a random (or stochastic) process with time domain T.

Definition. Let $\{X_t, t \in T\}$ be a random process. The function $m_{X_t} : T \mapsto \mathbb{R}$ given by $m_{X_t}(t) = \mathbb{E}[X_t]$ is called the mean function of the random process $\{X_t, t \in T\}$ (if the expectation exists).

Definition. Let $\{X_t, t \in T\}$ be a random process. The function $r_{X_t} : T^2 \mapsto \mathbb{R}$ given by $r_{X_t}(s, t) = \mathbb{C}[X_s, X_t]$ is called the covariance function of the random process $\{X_t, t \in T\}$ (if the covariance exists).

Definition. A random process $\{X_t, t \in T\}$ is weakly stationary if, and only if, both of the following two conditions are satisfied:

1. The mean function is constant, that is, there exist a constant c such that $m_{X_t}(t) = c \quad \forall t \in T$.
2. The covariance function depends only on the time-lag, that is, there exist a function \tilde{r}_{X_t} such that $r_{X_t}(s, t) = \tilde{r}_{X_t}(s - t) \quad \forall (s, t) \in T^2$. If such a function exists, then \tilde{r}_{X_t} is also called the covariance function of the process.

Let Y and Z be two independent random variables with expectation zero and variance σ_Y^2 and σ_Z^2. We construct the random process $\{X_t, t \in \mathbb{R}\}$ by:

$$X_t = Y \sin(t) + Z.$$

Is this process weakly stationary?

Let $A \in \mathcal{U}(0, 1)$ and $\phi \in \mathcal{U}(0, 2\pi)$ be two independent random variables. Define the random process $\{X_t, t \in \mathbb{R}\}$ by:

$$X_t = A \cos(t + \phi).$$

Is this process weakly stationary?
• Estimation of the mean function
• Ergodic processes
• Estimation of the covariance function
Let $e_0, e_{\pm 1}, e_{\pm 2}, \ldots$ be i.i.d. r.v. with zero mean and unit variance. Define the random process $\{X_t, t \in \mathbb{Z}\}$ by:

$$X_t = 7 + e_t + 0.6e_{t-1} - 0.3e_{t-2}$$
n = 10000;
e = randn(n,1);
X = 7 + ...
 filter([1 0.6 -0.3], 1, e);
plot(X);
Here are four realizations of this process.

Assuming, that we don’t know how the process was generated, how should we estimate the mean function?
We consider $X_1(t), X_2(t), X_3(t), X_4(t)$, to be i.d. observations from a r.v. with mean $m(t)$ and variance $\sigma^2(t)$.
\[\hat{m}(t) = \]

<table>
<thead>
<tr>
<th>(X_1(t))</th>
<th>(X_2(t))</th>
<th>(X_3(t))</th>
<th>(X_4(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.06</td>
<td>4.84</td>
<td>7.59</td>
<td>7.62</td>
</tr>
</tbody>
</table>
\[\hat{m}(t) = \frac{1}{4} \sum_{i=1}^{4} X_i(t) \approx 6.53 \]

- \[X_1(t) = 6.06 \]
- \[X_2(t) = 4.84 \]
- \[X_3(t) = 7.59 \]
- \[X_4(t) = 7.62 \]
\[\hat{m}(t) = \frac{1}{4} \sum_{i=1}^{4} X_i(t) \approx 6.53 \]

\[\mathbb{E} [\hat{m}(t)] = \]

\[X_1(t) = 6.06 \]
\[X_2(t) = 4.84 \]
\[X_3(t) = 7.59 \]
\[X_4(t) = 7.62 \]
\[\hat{m}(t) = \frac{1}{4} \sum_{i=1}^{4} X_i(t) \approx 6.53 \]

\[\mathbb{E}[\hat{m}(t)] = m(t) \]

\[X_1(t) = 6.06 \]
\[X_2(t) = 4.84 \]
\[X_3(t) = 7.59 \]
\[X_4(t) = 7.62 \]
\[\hat{m}(t) = \frac{1}{4} \sum_{i=1}^{4} X_i(t) \approx 6.53 \]

\[\mathbb{E} [\hat{m}(t)] = \hat{m}(t) \]

\[\text{V} [\hat{m}(t)] = s^2 = \]

\[X_1(t) = 6.06 \]
\[X_2(t) = 4.84 \]
\[X_3(t) = 7.59 \]
\[X_4(t) = 7.62 \]
\[
\hat{m}(t) = \frac{1}{4} \sum_{i=1}^{4} X_i(t) \approx 6.53
\]

\[
E[\hat{m}(t)] = m(t)
\]

\[
V[\hat{m}(t)] = s^2 = \frac{1}{4} \sigma^2(t)
\]

Is the estimate consistent?

<table>
<thead>
<tr>
<th>Function</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_1(t))</td>
<td>6.06</td>
</tr>
<tr>
<td>(X_2(t))</td>
<td>4.84</td>
</tr>
<tr>
<td>(X_3(t))</td>
<td>7.59</td>
</tr>
<tr>
<td>(X_4(t))</td>
<td>7.62</td>
</tr>
</tbody>
</table>
\[\hat{m}(t) = \frac{1}{4} \sum_{i=1}^{4} X_i(t) \approx 6.53 \]

\[\mathbb{E}[\hat{m}(t)] = m(t) \]

\[\mathbb{V}[\hat{m}(t)] = s^2 = \frac{1}{4} \sigma^2(t) \]

Is the estimate consistent? Yes!

\[\hat{s} = \]

\[X_1(t) = 6.06 \]
\[X_2(t) = 4.84 \]
\[X_3(t) = 7.59 \]
\[X_4(t) = 7.62 \]
Mean function estimation

\[
\hat{m}(t) = \frac{1}{4} \sum_{i=1}^{4} X_i(t) \approx 6.53
\]

\[
E[\hat{m}(t)] = m(t)
\]

\[
V[\hat{m}(t)] = s^2 = \frac{1}{4} \sigma^2(t)
\]

Is the estimate consistent? Yes!

\[
\hat{s} = \sqrt{\frac{1}{4} \frac{1}{3} \sum_{i=1}^{4} (X_i(t) - \hat{m})^2} \approx 0.67
\]

\[
I_{\hat{m}(t)} \approx \hat{m}(t) \pm 2 \cdot \hat{s} \approx [5.19, 7.87]
\]

\[
X_1(t) = 6.06
\]

\[
X_2(t) = 4.84
\]

\[
X_3(t) = 7.59
\]

\[
X_4(t) = 7.62
\]

If \(\hat{m}(t) \) is Gaussian.
Repeat this procedure for all time points!

* By mistake, the mean ±4 standard deviations (rather than ±2) has been plotted. By yet another mistake I lost my simulated noise process which makes re-plotting almost impossible...
We consider $X(1), X(2), \ldots, X(n)$ to be correlated observations from a r.v. with mean $m(t) = m$. If we assume that the process is stationary, we can estimate the mean using only one realization!
\(\hat{m} = \)
\[\hat{m} = \frac{1}{n} \sum_{t=1}^{n} X(t) \approx 7.26 \]

\[\mathbb{E}[\hat{m}] = \]

Mean function estimation
\[\hat{m} = \frac{1}{n} \sum_{t=1}^{n} X(t) \approx 7.26 \]

\[\mathbb{E} [\hat{m}] = m \]

\[\mathbb{V} [\hat{m}] = \]
\[\hat{m} = \frac{1}{n} \sum_{t=1}^{n} X(t) \approx 7.26 \]

\[\mathbb{E} [\hat{m}] = m \]

\[\mathbb{V} [\hat{m}] = \frac{1}{n^2} \sum_{\tau=-n+1}^{n-1} (n - |\tau|) r_X(\tau) \approx \frac{1}{n} \sum_{\tau=-\infty}^{\infty} r_X(\tau) \]

Is the estimate consistent?
\[\hat{m} = \frac{1}{n} \sum_{t=1}^{n} X(t) \approx 7.26 \]

\[\mathbb{E} [\hat{m}] = m \]

\[\text{Var} [\hat{m}] = \frac{1}{n^2} \sum_{\tau=-n+1}^{n-1} (n - |\tau|) r_X(\tau) \approx \frac{1}{n} \sum_{\tau=-\infty}^{\infty} r_X(\tau) \]

Is the estimate consistent? Only if the process is (linear) ergodic!
It is, since:

\[r_X(\tau) = \begin{cases}
1.45 & \tau = 0 \\
0.42 & \tau = \pm 1 \\
-0.3 & \tau = \pm 2 \\
0 & \text{otherwise}
\end{cases} \]

And therefore, the variance:

\[
V[\hat{m}] = \frac{1}{n^2} \sum_{\tau=-n+1}^{n-1} (n - |\tau|) r_X(\tau) \approx \frac{1}{n} \sum_{\tau=-\infty}^{\infty} r_X(\tau)
\]

will go to zero when \(n \) goes to infinity.

Later we will discuss how to estimate this!
So, our process is ergodic, and the estimate converges to the correct value.
Let $e_0, e_{\pm 1}, e_{\pm 2}, \ldots$ be i.i.d. r.v. with zero mean and unit variance and let $M \in N(7, 7^2)$ be a Gaussian random variable. Define the random process $\{X_t, t \in \mathbb{Z}\}$ by:

$$X_t = M + e_t + 0.6e_{t-1} - 0.3e_{t-2}$$
n = 10000;
e = randn(n,1);
M = normrnd(7,7);
X = M + ...
 filter([1 0.6 -0.3], 1, e);
plot(X);
Here are four realizations of this process.

Is it ergodic?
It is not, since:

\[r_X(\tau) = \begin{cases}
50.45 & \tau = 0 \\
49.42 & \tau = \pm 1 \\
48.7 & \tau = \pm 2 \\
49 & \text{otherwise}
\end{cases} \]

And therefore, the variance:

\[V[\hat{m}] = \frac{1}{n^2} \sum_{\tau=-n+1}^{n-1} (n - |\tau|) r_X(\tau) \]

will not go to zero when \(n \) goes to infinity.
So, if we just have one realization the estimate of the mean would not converge to the true value, no matter how many observations we have.
Consider a realization of the ergodic process.

Let’s estimate the covariance function!
\[
\hat{r}(\tau) = \frac{1}{n} \sum_{t=1}^{n-\tau} \left(x(t) - m\right) \left(x(t + \tau) - m\right)
\]
\[\hat{r}(\tau) = \frac{1}{n} \sum_{t=1}^{n-\tau} \left(x(t) - m \right) \left(x(t + \tau) - m \right) \]
Use the biased covariance function estimator!

Reason: It is non-negative definite, it has lower mean square error and less risk of spurious estimates for large time-lags.
If the non-biased estimator was used, the result would have been much poorer:
Assuming that the AR-process is stationary, we proved that the mean is zero, and we discussed how the covariance function could be determined by the Yule-Walker equations:

\[r_X(\tau) + a_1 r_X(\tau - 1) + \cdots + a_p r_X(\tau - p) = \begin{cases} \sigma^2 & \tau = 0 \\ 0 & \tau \neq 0 \end{cases} \]

Assuming stationarity, we derived the spectral density:

\[R_X(f) = \frac{\sigma^2}{\sum_{k=0}^{p} a_k e^{-i2\pi fk}} \]

Assume that the stationary random process \(\{X(t), t \in \mathbb{Z}\} \) has covariance function

\[r_X(\tau) = \begin{cases} 4 & \tau = 0 \\ 2 & \tau = \pm 1 \\ -1 & \tau = \pm 2 \\ 0 & \text{otherwise} \end{cases} \]

Consider the following estimators of the mean:

\[\hat{m}_1 = \frac{X(t) + X(t-1)}{2}, \quad \hat{m}_2 = \frac{X(t) + X(t-2)}{2}, \quad \hat{m}_3 = \frac{X(t) + X(t-3)}{2}. \]

Which one is the best?
Consider the following covariance function:

\[r(\tau) = \frac{2 + \tau^2}{1 + \tau^2} \]

Can it be the covariance function of an ergodic process?
• Estimation of the mean function

• Ergodic processes

• Estimation of the covariance function